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Class Documentation 

ZeroRoboticsGame Class Reference 

 
The class of the game object that you will use.  
#include <ZRGame.h> 

Public Member Functions 

 float getFuelRemaining () 

 void sendMessage (unsigned char inputMsg) 

 unsigned char receiveMessage () 

 bool isFacingOther () 

Check if the camera is pointed towards the other satellite.  

 float takePic () 

Attempts to take a picture in the current position.  

 float getPicPoints () 

Determines how many points a picture would give if taken immediately.  

 int getMemoryFilled () const  

Returns how many memory slots are currently in use.  

 int getMemorySize () 

Returns the total number of memory slots available to the satellite.  

 float uploadPics (void) 
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Attempts to upload pictures taken to Earth.  

 bool isCameraOn () 

Makes sure the camera is on.  

 float getEnergy () 

Tells how much energy the player has.  

 float getOtherEnergy () 

Tells how much energy the opponent has.  

 bool posInLight (float pos[]) 

Returns true if the given coordinate is in the light zone.  

 bool posInDark (float pos[]) 

Returns true if the given coordinate is in the dark zone.  

 bool posInGrey (float pos[]) 

Returns true if the given coordinate is in a grey zone.  

 int posInArea (float pos[]) 

Returns 1 if the given coordinate is in the light, -1 if in the dark, and 0 otherwise.  

 float getLightInterfacePosition () 

Determines where the center of the grey zone at the tail end of the light zone is.  

 float getDarkGreyBoundary () 

Determines where the boundary between the dark zone and the grey zone is.  

 float getLightGreyBoundary () 

Determines where the boundary between the light zone and the grey zone is.  

 float getLightSwitchTime () 

Determines how long until the light and dark zones next switch (2D/3D).  

 int getNumItem () 

Returns the number of total items in play, whether they have been picked up yet or not.  

 bool useMirror () 

Uses a held mirror item.  

 int getMirrorTimeRemaining () 

Returns the amount of time left on your current mirror.  

 int getNumMirrorsHeld () 

Returns the number of mirrors currently held and available for use.  

 void getItemLoc (float pos[], int itemID) 

Copies the location of a given item into the given array.  

 int hasItem (int itemID) 

Tells who has a given item.  

 int getItemType (int itemID) 

Returns what the item does.  

 float getScore () 

Returns the player's current score.  

 float getOtherScore () 

Returns the opponent's current score.  

 int getCurrentTime () 

Returns the time.  

 ZeroRoboticsGame (ZeroRoboticsGameImpl &impl, ZeroRoboticsAPIImpl &apiImpl) 

Constructor for the game. The provided references should be singleton instances.  
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Static Public Member Functions 

 static ZeroRoboticsGame & instance () 

 

Detailed Description 

The class of the game object that you will use.  

Contains publicly available member functions.  

 

Member Function Documentation 

float ZeroRoboticsGame::getDarkGreyBoundary () 

 

Determines where the boundary between the dark zone and the grey zone is.  

 

Returns: 

The y-coordinate of the plane between the dark zone and the grey zone.  

float ZeroRoboticsGame::getEnergy () 

 

Tells how much energy the player has.  

 

Returns: 

Amount of energy the player satellite currently has.  

float ZeroRoboticsGame::getFuelRemaining () 

Tells the player how much fuel remains. 

Returns: 

float indicating how many seconds of fuel remain.  

void ZeroRoboticsGame::getItemLoc (float pos[], int itemID) 

 

Copies the location of a given item into the given array.  

 

Parameters: 

pos  A pointer to an array of size 3 which will be overwritten by the item location.  

itemID  The integer identifier of a given item.  
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int ZeroRoboticsGame::getItemType (int itemID) 

 

Returns what the item does.  

Possible Item Types: 

 ITEM_TYPE_ADD_SCORE 

 ITEM_TYPE_ADD_ENERGY 

 ITEM_TYPE_ADD_MEMORY 

Parameters: 

itemID  The integer identifier of a given item.  

Returns: 

The corresponding item type to the given identifier.  

float ZeroRoboticsGame::getLightGreyBoundary () 

 

Determines where the boundary between the light zone and the grey zone is.  

 

Returns: 

The y-coordinate of the plane between the light zone and the grey zone.  

float ZeroRoboticsGame::getLightInterfacePosition () 

 

Determines where the center of the grey zone at the tail end of the light zone is.  

The tail end is at the lower Y-coordinate of the light zone, disregarding any portion that has wrapped 

around. 

Returns: 

The y-coordinate of the light interface plane.  

float ZeroRoboticsGame::getLightSwitchTime () 

 

Determines how long until the light and dark zones next switch (2D/3D).  

 

Returns: 

Number of seconds until the light switches.  

int ZeroRoboticsGame::getMemoryFilled () const 

 

Returns how many memory slots are currently in use.  

 

Returns: 

The number of memory slots used.  
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int ZeroRoboticsGame::getMemorySize () 

 

Returns the total number of memory slots available to the satellite.  

This includes both used and unused slots. 

Returns: 

Number of memory slots available.  

int ZeroRoboticsGame::getMirrorTimeRemaining () 

 

Returns the amount of time left on your current mirror.  

 

Returns: 

remaining time with a mirror up, zero if no mirror is up.  

int ZeroRoboticsGame::getNumItem () 

 

Returns the number of total items in play, whether they have been picked up yet or not.  

 

Returns: 

Number of total items.  

int ZeroRoboticsGame::getNumMirrorsHeld () 

 

Returns the number of mirrors currently held and available for use.  

 

Returns: 

number of mirrors held by the player.  

float ZeroRoboticsGame::getOtherEnergy () 

 

Tells how much energy the opponent has.  

 

Returns: 

Amount of energy the opponent satellite currently has.  

float ZeroRoboticsGame::getPicPoints () 

 

Determines how many points a picture would give if taken immediately.  

Does not actually take a picture. Costs 0.1 energy. 

Returns: 

The amount of points that the picture is worth.  
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float ZeroRoboticsGame::getScore () 

 

Returns the player's current score.  

 

Returns: 

Player satellite score.  

int ZeroRoboticsGame::hasItem (int itemID) 

 

Tells who has a given item.  

 

Parameters: 

itemID  The integer identifier of a given item.  

Returns: 

0 if you have picked up the specified item, 1 if the other player has, or -1 if no one has.  

static ZeroRoboticsGame& ZeroRoboticsGame::instance () [static] 

Retrieves the singleton instance of the game API. Users are not allowed to construct a game instance, 

so the API must be retrieved through this interface. 

Returns: 

singleton of the game API  

bool ZeroRoboticsGame::isCameraOn () 

 

Makes sure the camera is on.  

 

Returns: 

true if the camera is usable, false if not.  

bool ZeroRoboticsGame::isFacingOther () 

 

Check if the camera is pointed towards the other satellite.  

 

Returns: 

true if the camera is facing the other satellite, false otherwise.  
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int ZeroRoboticsGame::posInArea (float pos[]) 

 

Returns 1 if the given coordinate is in the light, -1 if in the dark, and 0 otherwise.  

 

Parameters: 

pos  An array of three floats in (x, y, z) order.  

Returns: 

1 if the given coordinate is in the light, -1 if in the dark, and 0 else.  

bool ZeroRoboticsGame::posInDark (float pos[]) 

 

Returns true if the given coordinate is in the dark zone.  

 

Parameters: 

pos  An array of three floats in (x, y, z) order.  

Returns: 

true if the coordinate is in dark, false else.  

bool ZeroRoboticsGame::posInGrey (float pos[]) 

 

Returns true if the given coordinate is in a grey zone.  

 

Parameters: 

pos  An array of three floats in (x, y, z) order.  

Returns: 

true if the coordinate is in grey, false else.  

bool ZeroRoboticsGame::posInLight (float pos[]) 

 

Returns true if the given coordinate is in the light zone.  

 

Parameters: 

pos  An array of three floats in (x, y, z) order.  

Returns: 

true if the coordinate is in light, false else.  

unsigned char ZeroRoboticsGame::receiveMessage () 

Recieve value from 0-255 from other satellite. 

Returns: 

An unsigned char containing a value from 0-255.  
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void ZeroRoboticsGame::sendMessage (unsigned char inputMsg) 

Send a value from 0-255 to the other satellite. 

Parameters: 

inputMsg  Unsigned Char to be sent to other satellite.  

float ZeroRoboticsGame::takePic () 

 

Attempts to take a picture in the current position.  

The camera will be disabled for 3 seconds after an attempt, whether successful or not. Costs 1.0 

energy. 

Returns: 

The amount of points that the picture taken is worth.  

float ZeroRoboticsGame::uploadPics (void ) 

 

Attempts to upload pictures taken to Earth.  

Will fail if not facing Earth (3D/Alliance). Disables camera for three seconds upon sucessful upload. 

Costs 1.0 energy. 

Returns: 

The total score over the course of the game so far.  

bool ZeroRoboticsGame::useMirror () 

 

Uses a held mirror item.  

 

Returns: 

true if the item existed and was used, false otherwise.  

 

The documentation for this class was generated from the following file: 

 ZRGame.h 

 

File Documentation 

Constants.h File Reference 

 
A list of constants used in the ZR program.  
#include "math_matrix.h" 

Defines 

 #define GAME_TIME  0 

The time at game start.  

 #define VEL_X  3 
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The index for the beginning of the velocity array inside of ZRState.  

 #define MAX_GAME_TIME  180 

Length of the whole game in seconds.  

 #define MAX_FACING_ANGLE  0.968912f 

Cosine of the angle at which pictures may be taken/uploaded.  

 #define ITEM_TYPE_ADD_SCORE  0 

The type identifier for a score item.  

 #define ITEM_TYPE_ADD_ENERGY  1 

The type identifier for an energy item.  

 #define ITEM_TYPE_MIRROR  2 

The type identifier for a mirror.  

 #define ITEM_SCORE  1.5f 

The added score given by a score item.  

 #define ITEM_ENERGY  5.0f 

The added energy given by an energy item.  

 #define ITEM_MIRROR_DURATION  15 

The length a mirror lasts once activated.  

 #define NUM_ITEMS  10 

The number of items in the game.  

 #define MP_SPEED  0.01f 

The maximum speed at which an item may be picked up.  

 #define MP_RADIUS  0.05f 

The maximum distance from which an item may be picked up.  

 #define MP_ROTATION_ANGLE  0.707106f 

(rad) Rotation of satellite needed to pick up item (cos(90/2))  

 #define LIGHT_SWITCH_PERIOD  60 

The light switches this number of seconds after the first flip in the 2D/3D versions of the game.  

 #define LIGHT_SPEED  .025f 

The light moves at this speed (in m/s) during the Alliance portion of the game.  

 #define LIGHT_WIDTH  .8 

The width of the area that is not dark. Note that this includes the grey zone.  

 #define LIGHT_GREY_WIDTH  .2 

The width of the grey zone in the 2D/3D versions. The width of each grey zone in Alliance is 

LIGHT_GREY_WIDTH/2.  

 #define DISABLE_CAMERA_TIME  3 

The camera is disabled for this many seconds after taking and uploading pictures.  

 #define CAMERA_DEFAULT_MEMORY  2 

The number of memory slots an unmodified camera has.  

 #define CAMERA_MAX_MEMORY  4 

The number of memory slots the camera may have at a maximum.  

 #define PHOTO_MIN_DISTANCE  0.5 

The minimum distance the sphere may be from the target of its photograph.  

 #define PROP_ALLOWED_SECONDS  60.0f 

Total time in thruster-seconds allowed per user. Full tank ~500 seconds.  

 #define MAX_ENERGY  5.0f 

Energy capacity.  
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 #define STARTING_ENERGY  MAX_ENERGY 

Starting energy.  

 #define ENERGY_GAIN_RATE  0.5f 

Energy gained per second.  

 #define ENERGY_COST_TAKE_PICTURE  1.0f 

The energy cost to take a picture.  

 #define ENERGY_COST_GET_OTHER_ENERGY  0.1f 

The energy cost to determine how much energy your opponent has.  

 #define ENERGY_COST_GET_PIC_POINTS  0.1f 

The energy cost to determine how many points taking a picture right now would be worth, should you choose to 

take it.  

 #define ENERGY_COST_UPLOAD_PICTURES  1.0f 

The energy cost to upload pictures.  

 #define ENERGY_COST_THRUSTERS  (0.0005f)*(.01f)*(PROP_ALLOWED_SECONDS) 

The energy cost to use one second of fuel.  

 #define START_SCORE  0.0f 

Your score upon starting the game.  

 #define ZONE_pX  0.64f 

The highest X coordinate in bounds.  

 #define ZONE_pY  0.80f 

The highest Y coordinate in bounds.  

 #define ZONE_pZ  0.64f 

The highest Z coordinate in bounds.  

 #define ZONE_nX  -ZONE_pX 

The lowest X coordinate in bounds.  

 #define ZONE_nY  -ZONE_pY 

The lowest Y coordinate in bounds.  

 #define ZONE_nZ  -ZONE_pZ 

The lowest Z coordinate in bounds.  

Variables 

 const float EARTH [3] = {0.0f, 0.0f, 1.0f} 

Contains the attitude towards Earth.  

 const float ITEM_LOC [NUM_ITEMS][3] 

Array that outlines the locations of each item.  

 const int ITEM_TYPES [NUM_ITEMS] 

Array that outlines the types of each item.  

 const float limits [3] = {ZONE_pX,ZONE_pY,ZONE_pZ} 

The limits of the interaction zone.  
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Variable Documentation 

const float EARTH[3] = {0.0f, 0.0f, 1.0f} 

Contains the attitude towards Earth.  

The satellite's attidude must be within MAX_FACING_ANGLE to this attitude  

const float ITEM_LOC[NUM_ITEMS][3] 

Initial value: 

{ 

  { 0.3, 0.0, 0.0}, 

  {-0.3, 0.0, 0.0}, 

  { 0.0, 0.3, 0.0}, 

  { 0.0,-0.3, 0.0}, 

  { 0.6, 0.4, 0.6}, 

  { 0.6, 0.4,-0.6}, 

  {-0.6, 0.4, 0.6}, 

  {-0.6, 0.4,-0.6}, 

  {-0.6, 0.0,-0.6}, 

  { 0.6, 0.0, 0.6} 

} 

Array that outlines the locations of each item.  

Usage: ITEM_LOC[int ItemID] Each element is an array of three floats for the XYZ coordinates.  

const int ITEM_TYPES[NUM_ITEMS] 

Initial value:  

{ 

  ITEM_TYPE_ADD_ENERGY,  

  ITEM_TYPE_ADD_ENERGY,  

  ITEM_TYPE_ADD_ENERGY,  

  ITEM_TYPE_ADD_ENERGY,  

  ITEM_TYPE_ADD_SCORE, 

  ITEM_TYPE_ADD_SCORE, 

  ITEM_TYPE_ADD_SCORE, 

  ITEM_TYPE_ADD_SCORE, 

  ITEM_TYPE_MIRROR, 

  ITEM_TYPE_MIRROR 

} 

Array that outlines the types of each item.  

Usage: ITEM_TYPES[int ItemID] Each element is an integer that refers to one of the previously 

defined item types. 

 

ZRGame.h File Reference 

 
Contains documentation of functions specific to the player side of the game.  
#include "pads.h" 
#include "Constants.h" 
#include "spheres_constants.h" 
#include "ZR_API.h" 
#include "ZRGameInternal.h" 
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Classes 

 class ZeroRoboticsGame 

The class of the game object that you will use. 


